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I. INTRODUCTION

‘v
».

This report summarizes research on subbottiom effects on underwater
acoustic propagation cerried out et Applied Research Laboratories, The
University of Texas at Austin (ARL:UT), under Contract N0OOO14-82-K-0679.
Our main goal was to extend the theory of normal modes to accurately treat
the effects of shear wave propagation in the seafloor. This would provide
the fremework for determining the importence of shear wave processes in
shallow water areas and areas having thin sediment cover. Methods for
determining the major propagation paths in a sloping geometry were also
investigated.

The major accomplishment of our research was developing a8 procedure
for rigorously ordering and counting normal modes! (the mode identification
problem) when the seafloor is represented by an impedance boundary
condition. A natural extension of the theoretical methods used to solve the
mode identification problem led to establishing the relationship between
the mode concepts of normalization and cycle distance and the geometrical
ray concepts of beam displacement and time delag.2

As part of our research, we developed a normal mode computational
model that uses the mode identification procedure to assigh mede numbers
and verify that the mode sel is complete, ie., that no modes have been
skipped. The impedance boundary condition is calculated from the plane
wave reflection coefficient of the seafloor. The model is very flexible
since it can be used with any subbottom description (1ayered viscoelastic,
Biot, etc) for which the plane wave reflection coefficient can be calculsted.
The computational model has already been used to examine the role of sheer S
wave processes in propagation to hydrophones and geophones ot the seafloor LA
and in the substrate 3,4

This report is organized as follows. Section Il reviews the
development of the impedance boundary condition normal mode approach.
Section (1l discusses our research on propagation over slopes. Appendix A AR
lists documentation produced under this contract. RRGNE
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Il. A NORMAL MODE APPROACH USING AN IMPEDANCE BOUNDARY CONDITION

Traditional normal mode approaches are restricted in their ability to
reslisticelly treat the effects of shear waves. For example, normal mode
calculations used to examine the optimum frequency of propagation in
shallow water? included shear wave effects only as a correction to the
mode attenuation coefficients. This approach is based on the rather
oversimplified view that shear waves are generated at the water-sediment
interface and are completely absorbed in the seafloor, when in fact the
amount of energy coupled into shear waves at the water-sediment interface
is negligible for unconsolidated marine sediments.® The unrealistically
large shear wave velocities (60C m/s versus messured’ values of 150 m/s)
needed to successfully model acoustic data emphasizes the fact that shear
wave processes are not being accurately treated. Normal mode approaches
that include energy propagating as shear waves (rather than being
completely absorbed) are needed to investigate low frequency propagation in
greas having thin sediment cover where shesr wave propagation in the
basalt may be an important process.8

Including shear wave propsgation in 8 layered, depth dependent seafloor
greatly compliicates the theoretical probiem of defining and counting the
normal modes. The mode functions themselves have both shear and
compressional components in the seafloor. The usual procedure for ardering
- modes in 8 fluid, based on counting the zero crossings of the mode function, RN
E also breaks down since zero crossings can occur in both shear and “
compressional components. .

The approach we took is based on representing the seafloor as an

!‘ impedance boundary condition.® This approach has the aivantage of breaking
::_Ij the normal mode problem into two part- (1 calculating the boundary
::';I conditicn as a function »f lhe separation constant in the wave equation (the
N horizontal weveruinber), and (2} finding the mode functions end eigenvalues

for **+ .npedonce boundary condition. The impedance boundary condition is
¢asily calculated from the plane wave reflection coefficient of the seafloar.
Note that this approach can be used with any description of the seafloor for
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which the reflection coefficient can be calculated, i.e, Biot, viscoelastic,
layered solid, and combinations of fluid and solid layers. Once this boundary
condition ic established, the cslculation of the mode functions and
eigenvalues is easily cerried out using conventional numerical methods.

we developed a method! for rigorously ordering and counting modes
when an impedance boundary condition is used to describe the seafioor. The
ability to accurately count modes is important for determining whether s
numerical calculation has produced a complete set of modes or has skipped
one or more. The usual procedure of identifying the mode with the number
of zero crossings in the mode function will not work for the impedance
boundary condition because there is no information about the mode function
below the water-sediment interface. The basic idea of our procedure is to
decompose the mode function in the water column into 8 magnitude and &
phase. The phase is made up of two parts; one depends only on the
impedance boundary condition and the other, only on the depth dependence of
the mode function in the water column. The boundary contribution to the
total phase is related to the phase of the complex valued reflection
coefficient of the seafloor. The pressure release boundary at the ses
surface causes the totsl phase to increment by 277 from mode to mode.
Modes are counted and ordered by the number of phase increments.

We alsu developed and tested prototype software for 8 normal mode
computational maodel implementing the irpedance boundary condition
description of the seafloor. The impedance boundary condition is evaluated
from the plane wave reflection coefficient, which is supplied either as a
subroutine or as a table of values. The model makes the usual assumption
that the mode attenuation coefficients (the imeginary part of the complex
eigenvaiue) are small enough to be g small correction to the eigenvalue. The
w2 *el first uses the boundary condition at the seafloor cslculated without
attenuation (2 produce an ordered set of normalized mode functions, modal
phase velocities, and modal group velocities. Mode functions in the seafloor
are obtuined in our model as part of the calculation of the reflection
coefficient st the eigenvaiues. 0Once the mode functions are known, the
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maode attenuation coefficients are evaluated as g perlurbation correction
based on the boundary condition calculated for 8 seafloor with atteruation

Our theoretical approach also led to a clarification of the relationship
between normal mode and geometrical rsy descriptions of propagatmn.'2
Previous research!V used the wWKB approximation far the mode functions to
estimate derivatives with respect to mode number by taking differences
between quentities for neighboring modes. QOur enalysis resulted in @ more
accurate sssessment of the analogy between rays and modes by allowing
direct computation of derivatives with respect to mode number.

A secomd approach for including shear wave effects in a computations)
normal mode model was also examined. We reviewed several
techmques' =13 for directly integ-ating the equations of motion for a
depth dependent, colid subbottom. Thase approaches were found to be
equivalent to celculating the plane wave reflection coefficient of the
'} seaflioor, and therefore were not pursued.

Additional work was done to aid the design of a lsboratory experiment

_ (supported by ONR Code 425UA; to investigate propagation over a slaping

i bottom. The experiment, to be conducted by ARL:UT in 1985, will involve

propagating a single mode up and down a slope. The acoustic field will be

measured as a function of depth and range and compared to the predictions

' of adiabatic mode theory and coupled mode theory. we calculated normal

; mode functions for a sequence of water depths which will be used in
‘ designing the experiment and interpreting data.
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(. PROPAGATION IN A SLOPING GEGMETRY

There are indications that the transition from deep to shsllow water
is a geometry favorable to low frequency propagation within the ocean
bottom. Model experiments'4 show that significant waterborne energy can
couple into the subbottom along slopes. There i also evidence ! that the
ambient noise level near 15 Hz is very low both on and below the seafloor.
These observations combine to suggest that sensors in shaellow water can
detect low frequency energy from sources in deep water

In 1981 ARL:UT carried out a preliminary analgsis‘f’ of data collected
by Western Electric Company (now AT&T Technology Systems) off the coast
of Nova Scotia. Fiqure 1 shows the exercise area and source track.
Explosive source data were collected on a series of hydrophones placed
along the slope, as shown in Fig. 2. The geoacoustic description of the
exercise ares given in Fig. 3 was developed from erchived geologicel data.
The analysis concentrated on identifying candidate bottom penetrating
arrivals in the data shown in Fig 4. These data were collected on
hydrophone 4 (shown in Fig. 2) and were produced by 8 1.1 az explosive
chaerge detonsted at & depth of 18 m at & range of 247 km downslope from
hydrophone 4. A candidate bottom penetrating armval {labeled S in Fig. 4)
was identified fram an snalysis of the time seres in freguency bands from
10 to 1000 Hz. Arrival 5 had enerqgy concentrated near 35 Hz and almost no
energy above 100 Hz. This lack of high frequency energy is consistent with
attenuation of the higher frequencies along @ path through the subbottom. In
contrast, arrival W had significant energy at frequencies up to 1000 Hz and
was identified as an arrival that did not propagate through the subbottom.

Research carried aut under the present contract focused on modeling
propagation along paths through the sediment for the enviranment of Fig. 3,
with the goal of clearly identifying subbiottom penetrating arrivale in the
experimental dats of Fig. 4  We used two modeling approaches. The first
was a ray path analysis for which the ARL:UT range variable ray trace mode)
(MEDUSA) 7 was modified to include ray paths traveling through the
subbottom. The secand was a normal mode analysis that used the ARL:UT

-------------------------------------------
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adiabatic normal mode model (ADIAB) to calculate the travel time of mndes
from their group velocities.

For the range veriasble rey trace analysis, the weter colurmn was
constructed from the measured bathymetry and sound speed protiles.
Publiched relationships between sediment type and geoacoustic
parameters’ were used to develop a geoacoustic protile for the geclugical
structure of Fig. 2. The profile had three sloping leyers, esch having &
different dependence of compressional velocity on depth. Velocity ratios
scroes  the water-sedimert interface and across interfaces between
sediment layers were assumed to be constant in range.

The ray analysis showed that sediment penetrating compressional
waves alone could not predict the observed arrival structure. There were no
strong eigenrays corresponding to the second and third arrivals in the first
0.7 s of Fig 4. Some deep penetrating paths with arrivels in this intervel
were found, but they were too heavily attenusted to carry significant : _
energy. Eigenrays with one, two, and three shallow penetrations into the L‘“

subbottom (300 m or less) had differences in travel time of about 1 < and

could not explain the arrivals with time separations of 0.3 and 0.5 s seen in

the data. Qf particular concern were the iack of an eigenray corresponding )

to arrival S in Fig. 4 (the suspected sediment penetrating arrrival) and the aae
5 existence of an energetic eigenray at about 0.75 s, a time at which there is
- no signal in the dete.

Sensitivity studies were carried out to determine whether errors in the B
geoacoust:c description of the area could explain the lack of agreement
between eigenray arrival times end the dsts.  The thickness and
compressional velocity gradient of each layer and the velocity ratio across

each interface were voried. Reasonable variations of these parameters did ’Ei;
not have a major effect on the eigenray structure. Thug, our conclusion is .‘\:::i::;;:“
that propegation mechanisins (e.q., shear waves, interiace waves, heed RN
waves, etc.) that were not included in our ray analysis are important for ?_:":::

this environment. E‘ = .




To determine whether propagation at low frequencies in this
environment had a modal character, we used the ARL:UT adiabatic normal
mode model to calculate tiavel times of the modes for comparison with the
data. For our adisbatic normal mode analysiz, we approximaled the range
dependent environment of Fig. 3 with a sequence of horizontally stratified
range intervals. The discrete normal mode spectrum a8t 35 Hz was
calculated for each of theee intervals. The travel time of esch mode was
then evaluated from the range dependence of the group velocity.

About half of the 60 modes existing 8t the receiver had arrival times
within the 2.5 ¢ extent of the data--far too many modes for the arrivels in
the date to be individual modes. Because calculation of the constructive
interference of several modes over the frequency band of the data was
beyond the scope of the cw adiabatic model, it was not possible to make 3
definitive comparison with Fig. 4. However, the analysis did show that
there are modes at 35 Hz with travel times consistent with arrival S in
Fig. 4. The identification of these modes with arrival S is strengthened by
the observation that their propagation loss is close to that obtained in
Ref. 17 for arrival S in the 35 Hz band. These modes penetrate 200-400 m
into the sediment. There are also nine modes with arrivel times between
0.3 and 0.7 < that could make up the second and third arrivals in the first
0.7 s of data. These modes are mostly waterborne, but do penetrate
shallowly (50-100 m) into the sediment near the receiver.

While the normal mode analysis was successful in predicting mode
travel times that are consistent with the overall duration of the data,
further resesrch is needed to understand the time series of Fig. 4. The
adiabatic approach treats the range variability of the environment, but does
not include effects due to the broadband nature of the signhal. The
interference between modes at different frequencies could be a major
factor in producing the time dependence and magnitude seen in the data. If
this is true, further progress in the adiabatic analysis would require a more
sophisticated computational model capable of simulating broadband time
series.
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